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Abstract

Government policies for energy efficiency in transportation systems are likely to clear the
way for alternative propulsion technologies, such as Plug-in Electric Vehicles (PEVs), to become
widespread in automotive industry sales. However, integrating PEVs in electric power systems
(EPSs), such that system-favourable charging schedules are facilitated, still poses regulatory
and technical challenges for the entire spectrum of stakeholders, from policy makers to regulated
distribution system operators and competitive fleet owners. To favour an EPS in question, i.e.
a collection of producers, consumers represented by retailers/load aggregators that meet in the
electricity market as well as network operators, a combination of competitive market prices as
well as regulated use-of-system charges should govern the PEV charging. However, the value
proposition, i.e. the value adding services that a Flexible Load Aggregator (FLA) is bringing
to the EPS via participating in electricity markets with a contracted fleet of PEVs under Direct
Load Control (DLC), remains unclear to this point.

This work-in-progress paper presents a methodology to approximate the economic impact of
using a PEV fleet’s aggregated battery as a resource in electricity markets, ignoring all network
aspects. A stochastic profit optimization of the FLA’s self-scheduling is formulated with price
taker participation in day-ahead energy and ancillary service markets for capacity. Uncertainty
in market prices as well as energy demand is addressed. Using the Conditional Value-at-Risk
(CVaR) methodology, risk aversion of the FLA is explicitly captured. The corresponding
sensitivity of expected profits is analysed with an efficient frontier. As a result, this model
is intended to obtain the optimal PEV charging schedule and according FLA market bids,
subject to energy demand requirements for transportation of the final customers. Once the
methodology is confirmed, stylized examples and fully fledged case studies can be calculated
with the here presented model.
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Notation for Stochastic Programme
The nomenclature used throughout this study is stated below for quick reference: upper case letters
are used to denote decision variables, while lower case letters are used to describe input parameters.

Sets and Indices:

d ∈ D Day types spanning the weekly decision framework

v ∈ V Vehicles in the considered aggregation

h ∈ H Time periods spanning the market horizon of one day

c ∈ C Car types

f ∈ F Futures contract

j ∈ J Blocks in the futures contracting curve

ω ∈ Ω Scenarios

Input Parameters

α Confidence level for the CVaR calculation [p.u.]

β Weighting factor of CVaR in objective function [p.u.]

γch Energy resale price [e/MWh]

γdch Energy discharge compensation price [e/MWh]

δ System imbalance, positive in case of excess demand,
negative in case of lack of demand

[p.u.]

bcc Available battery capacity in a vehicle of class c [kWh]

cc Connection capacity of a vehicle of class c [kW]

ϑc Driving speed of a vehicle in class c [km/h]

ηdrivec Driving efficiency of a vehicle in class c [kWh/km]

ηchc Charging efficiency of a vehicle in class c [p.u.]

ηdchc Discharging efficiency of a vehicle in class c [p.u.]

vcv,c Binary matrix linking vehicle v to a car class type c ∈ {0; 1}

Futures Price Curve

λFf,j Futures market price of block j in contracting curve of future f [e/MWh]

ĒFf,j Upper limit of futures block j for contract f [MWh]
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Stochastic Market Prices

πω Probability of scenario ω [p.u.]

λDAMd,h,ω Day-ahead market price in time period h of day d and scenario ω [e/MWh]

%+
d,h,ω Ratio between positive imbalance price and day-ahead market

price
in time period h of day d and scenario ω

[p.u.]

%−d,h,ω Ratio between negative imbalance price and day-ahead market
price
in time period h of day d and scenario ω

[p.u.]

Stochastic PEV Fleet Mobility

avd,v,h,ω Binary fleet availability matrix of indicating the connection
of vehicle v in hour h of day d and scenario ω

∈ {0; 1}

∇d,v,h,ω State-of-Charge loss resulting due to the previous trip’s driving
for vehicle v in hour h of day d and scenario ω

[kWh]

isoc0,v,0,c Initial state-of-charge of vehicle v prior to optimization horizon [kWh]

Positive Real Decision Variables
First Stage Decision

EFh,f,j Energy corresponding to hour h bought in the futures market
from contract f in block j

[MWh]

Second Stage Decision

EDAM, ch
d,h,ω

Energy as a buying position in the day-ahead market
in hour h of day d and scenario ω

[MWh]

EDAM, dch
d,h,ω

Energy as a selling position in the day-ahead market
in hour h of day d and scenario ω

[MWh]
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Third Stage Decision

∆+
d,h,ω Positive energy deviation, balancing close to real time

in hour h of day d and scenario ω
[MWh]

∆−d,h,ω Negative energy deviation, balancing close to real time
in hour h of day d and scenario ω

[MWh]

ERT, chd,v,h,ω
Net real time energy bought from market and sold
to vehicle v for charging in hour h of day d and scenario ω

[kWh]

ERT, dchd,v,h,ω
Net real time energy sold from market and bought
to vehicle v for discharging in hour h of day d and scenario ω

[kWh]

SOCd,v,h,ωBattery state-of-charge
of vehicle v for discharging in hour h of day d and scenario ω

[kWh]

Risk Measure

ζ Auxiliary variable used to calculate the CVaR [e]

ıω Scenario-specific auxiliary variable used to calculate the CVaR [e]
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1 Introduction

1.1 Literature Review and Contributions
In a regulatory framework of modern, unbundled and deregulated electric power systems, the key
component in optimal plug-in electric vehicle charging should be market driven. A PEV aggregation
agent should hence have an objective function that is consistent with other agents known in electric
power systems. Reviewed literature has dealt with electricity market participation, which usually
involves the explicit modelling of uncertainty and risk aversion.

Consider therefore the problem of an electricity retailer that intends to aggregate a PEV use as
a resource in electricity markets. The operational challenge of such a PEV Aggregator presents a
combination of the classic problems of a retailer (sometimes also referred to as supplier or marketer)
[5], a large consumer (with potential on-site generation) [6], and a conventional power producer with
resource unavailability [17, 16], as well as of an energy storage system (ESS) operator.

The primary goal of the retailer, as an intermediary between producers and consumers [6], is the
medium term procurement of energy in electricity markets for a subsequent resale to final customers
at an agreed price. The main source of profit for a retailer is the difference in procurement cost and
resale revenue. Typically, retailers cover a large amount of energy demand in the futures market
and procure the rest from short-term pool markets. In short, the retailer buys electricity at an
uncertain price and resells it to an uncertain demand [5].

The main objective of a producer is to sell its available energy and capacity in the futures, pool
and ancillary service markets. The futures market provides fixed prices through futures contracts
over a pre-defined time horizon, while pool prices allow the producer to sell energy at higher prices
in the short term. Reserve being an important product to guarantee sufficient generation capacity
available in the electric power system to assure short term functioning, presents a valuable oppor-
tunity to fast response equipment. Balancing energy is an important tool for readjusting previous
market commitments closer to real time. If the production of this agent is subject to some technical
constraints and bound to suffer from unavailability, the producer may have to procure energy in
the pool to meet the futures contracting obligations[17]. The problem of resource unavailability
becomes even more prevalent if the production stems from vRES such as uncontrollable win power
production. A detailed modelling of a wind power producer participating in short term electricity
markets under uncertainty and risk aversion is found in [16]

However, there is not only similarity with known problems considering electricity market involve-
ment, the following basic aspects differentiate the conventional agents and the new PEV aggregation
agent, namely: demand is set via consumption of vehicles , consumption as well as the unavailability
of an aggregated battery is defined by the mobility of the vehicles. Therefore modelling of mobility
is crucial and identified as a key element for classifying existing literature.

[2] model a similar problem, of an storage owner scheduling capacity in balancing markets to
compensate uncertainty in wind availability, however it can be assumed that the owner of the wind
farm is also the owner of the ESS.

Most recently [1] performed a simulation investigating the potential role of PEV in the UK
electricity network with balancing requirements electricity network with a high shares of variable
renewable energy sources (vRES) such as wind. The study employs stochastic trip generation
profiles.

1.2 Main Research Question
• The objective of this study is to analyse, how electricity price uncertainty and mobility-caused

unavailability of aggregated PEV batteries affect the optimal market involvement and profit
functions of this new agent.

This study seeks to find insights about, e.g.:

1



1. Are aggregated vehicle batteries likely to present a physical hedge against price risk compared
to other risk hedges.

2. What is the dominating of the inherent characteristic of PEV storage: flexibility and unavail-
ability? The flexibility of the storage may – even though subject to conservative capacity
connection constraints – over-compensate the risk of unavailability.

2 Uncertainty Characterization
There are two main sources of uncertainty discussed in this study of a PEV aggregator taking de-
cisions in electricity markets: market price uncertainty and uncertainty about resource availability.
The former, market price uncertainty, is a known subject of research, and includes forecasting of
futures prices as well as pool prices, i.e. day-ahead, regulation, adjustment and balancing market
prices among others. The latter, resource availability of a fleet of vehicles remains largely under-
developed. Characterising it, boils down to analysing the stochastic processes that determine the
mobility of each vehicle in the fleet, i.e. the trips traveled, during which the vehicles are unavailable
because they are disconnected. In the following, both sources of uncertainty are discussed, the
former only shortly, the latter in greater detail.

Characterizing Electricity Market Price Uncertainty

Time series analyses have proven in various studies to be a very convenient instrument to forecast for
instance day-ahead market clearings in a pool. The challenge lies in capturing characteristics such
as daily and weekly seasonalities, high frequency and high volatility. Especially irrational bidding
behaviour by market agents, make price series more volatile than for instance demand series [?].

Estimating parameters of auto-regressive integrated moving average (ARIMA) models, is well
described by [14, 4]. ARIMA relate current prices to past prices and current errors to past errors.
They can be characterized by (p, d, q) corresponding to the number of autoregressive terms, the
differencing order, and the number of moving-average terms, respectively, while SARIMA models
include differencing for the daily or weekly seasonality. This study uses the notation from [7], given
by SARIMA(p, d, q)× (P,D,Q)S :1−

p∑
j=1

φjB
j

1−
P∑
j=1

ΦjB
j

 (1−B)
d (

1−BS
)D

yt =

1−
q∑
j=1

θjB
j

1−
Q∑
j=1

ΘjB
j

 εt

with a seasonal component of P autoregressive parameters Φ1,Φ2...,ΦP , Q moving average para-
meters Θ1,Θ2, ...,ΘQ and a differentiation order D.

Mobility and Uncertainty of Fleet Unavailability

If historical time series data of fleet movement were available, the standard procedure as proposed
in [8] could be applied following the subsequent steps:

1. The fleet movement, i.e. the amount of connected/disconnected vehicles, is considered as a
stochastic process being a random variable that evolves over time.

2. Applying a transform of the time-based observations to the frequency domain and choosing
an appropriate histogram representation (i.e. number of bins and mass centers of the chosen
classes) to produce an adjusted probability density function (pdf).

3. The pdf is then fitted to another, well known continuous probability distribution (Weibull,
Poisson, bimodal normal, or exponential etc. ) to use the estimated parameters for an
analytical construction of a cumulative probability distribution function (cdf).
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4. To assure that the normality assumption needed to apply ARMA models, i.e. a necessary
Gaussian nature of the marginal distributions, to hold, the original cdf is analytically trans-
formed to normal.

5. If multiple fleet movements, i.e. sub-groups of the total fleet in one geographical area are
modeled, one could assume that the unavailability of one spot is physically related to its
neighbors. In that case the underlying stochastic processes for fleet unavailability would
be dependent and therefore Cholesky decomposition and cross-correlation of the simulated
normal errors would have to be applied to the resulting transformed series.

6. A normality plot of the transformed data can be performed to test the goodness of fit.

7. Finally the autocorrelations inferred from historical data series are modeled by adjusting
univariate ARMA models.

However, the available data do not include historical time series of connected and disconnected
vehicles. Therefore scenario generation is performed constructing mobility patterns based on avail-
able data from household travel surveys, such as the US National Household Travel Survey (NHTS)
or, as in this study, the German Mobilität in Deutschland (MID) [11]. From selected German
respondents, who are most likely to adopt electric vehicles [3], it is assumed that there exist in-
formation on:

• The expected number of trips for each of the moving vehicles on a given day ntravgd , as
depicted in Tab. 6 of the Appendix, and

• Vehicle specific expected constant trip speeds ϑc to calculate trip durations given the distance.

For modeling the fleet unavailability, mainly three types of information were obtained, given by [?]
in the form of discrete cdfs , which are all detailed in Tab. 7, Tab. 8 and Tab. 9, respectively, of the
Appendix:

• The probability of travel on a certain day d, πtraveld = π̂traveld .

• The probability of starting a trip on a specific day d and hour h, πstartHd,h =
∑4
j=1 π̂

startH
d,t·4−j .

• The probability of a trip to be of a certain length l on a specific day πranged,l = π̂ranged,l − π̂ranged,l−1 ,

where the week is represented by a set of typical days with similar characteristics, i.e. d ∈
{Monday, Weekdays, Friday, Saturday, Sunday}, the time slots resolve the day in 24 hours,
h ∈ {1, 2, ..., 24}, and the trip lengths l are sorted into 20 different classes with increasing intervals
between class centers. Hats,ˆ , refer to the original unchanged data from [10], πstartd,t is aggregated
from original t 96 15-Minute to 24 hourly data points and πranged,l is transformed from original cdf
to adjusted pdf. For details please refer to the Appendix.

However detailed the data is provided in the cited sources, the exact process of creating the cdfs
is not given in a sufficiently detailed manner. The lack of raw data makes testing for statistical
dependencies of the underlying random variables impossible to this point. It seems, however, that
the given cdfs are mere histograms of all observations within the filtered group of vehicles, and
intuition permits to suspect a high statistic dependence of for instance start times and trip lengths.

Algorithm for Mobility Scenario Generation The goal of the algorithm for mobility scenario
generation is to combine the information given by the probability of any car to be traveling at a
certain time and day for a certain distance. This process boils down to creating probable scenarios
for the unavailability of the entire fleet in terms of connected and disconnected vehicles.

Therefore the following assumptions are made:

3



• Suppose there are |H| hours in a day, |T | trips made by each car on a certain day and there
are |V | vehicles under direct load control of the aggregator, where h stands for the hour, t for
trips and v indicates the index of the vehicle.

• Each vehicle belongs to a certain type of car indexed by c and there are |C| types of cars
characterized by

– available battery capacity bcc [kWh]
– connection capacity cc [kW]
– normal driving speed ϑc [km/h]
– driving efficiency ηdrivec [kWh/km]
– charging efficiency ηchargec [p.u.]

Then a binary matrix vcv,c of dimensions |V |× |C| can be constructed indicating whether a certain
vehicle belongs to a car class type vcv,c = 1, or not vcv,c = 0. This will be helpful indicating the
linear programme the activation of certain constraints with car class specific data.

In the following we denote the stochastic processes and their scenario representations coherently
with [7] as follows. A stochastic process λi : i ∈ {travel, startH, range} is given by vectors
λi
(
ωi
)
, ωi = 1, ..., |Ωi|, where ωi is the scenario index and Ωi is the number of scenarios considered.

λiΩi are the sets of possible realizations of stochastic processes λi, i.e., λiΩi =
{
λi (1) , ..., λi (Ω)

}
.

Each realization λi
(
ωi
)
is associated with a probability defined as

πi (ω) = P
(
ω|λi = λi (ω)

)
with

∑
ω∈Ω

πi (ω) = 1. (1)

Random realizations of the respective stochastic processes and assuring the feasibility of consecutive
trips, the result of the algorithm for mobility scenario generation provides two matrices, which define
a mobility scenario: the availability matrices on a daily trvd,v, and hourly avd,v,h basis1, as well
as the SOC loss matrix ∇d,v,h. An initial state of charge of the vehicles needs to be provided
separately.

2.1 Importance of considering Stochasticity in Mobility
The importance of considering stochasticity in a PEV scheduling optimization problem can be
explained by the amount of uncertainty in crucial input data. Figures 1 and 2 show graphical
illustrations of resulting connection / disconnection as well as SOC reductions over time from the
mobility scenario generation algorithm described above for 50 vehicles and 1000 scenarios. The
standard error bars allude to the order of magnitude in which input data for optimization problems
can vary for the same day and hence, in how far these variations may impact the optimal scheduling
outcome as well as influence on profit distributions his may yield.

However, the detailed description of the algorithm to generate scenarios of the mobility and
according unavailability of the PEV batteries as a resource for transactions in electricity markets
can be seen in the Appendix.

3 Decision Framework

3.1 Market Involvement
With reference to the description of a fully fledged electricity market organization in [7], we are
modeling the typical decision framework for a PEV aggregator as a big consumer/retailer. Such an

1trvd,v and avd,v,h are consistent with respect to each other, i.e they contain the same information in different
time resolutions.
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Figure 1: Uncertainty of Mobility Inputs: Graphical Illustration of Connection & Disconnection
Over Time with Standard Error Bars over 1000 Scenarios

0 24 48 72 96 120 144 168
0

5

10

15

20

Expected Weekly Consumption over all Scenarios [ω] with Error Bars

# Scenarios |Ω|= 1000
Monday Weekday Weekday Weekday Friday Saturday Sunday

Hours [h]

SO
C

 R
ed

uc
tio

ns
 a

ft
er

 R
ec

on
ne

ct
in

g 
[k

W
h]

 

 
Fleet SOC Reduction
Standard Error

Figure 2: Uncertainty of Mobility Inputs: Graphical Illustration of Aggregated SOC reductions
over Time with Standard Error Bars over 1000 Scenarios

5



agent would intend to determine its optimal involvement in the futures market to hedge against pool
(day-ahead and adjustment/balancing markets) price volatility on the one hand and use adjustment
and balancing market clearing close to real time for adjusting previous commitments, depending
on the unavailability of its aggregated resource. Hence, without loss of generality we consider a
decision sequence of the PEV aggregator as follows:

1. On a weekly basis the considered PEV aggregator decides on futures contracts spanning one
week to be negotiated in the futures market.

2. Every day the PEV aggregator decides its bidding in terms of pool involvement, which for
simplicity we reduce to sequential clearings of:

(a) day-ahead, and

(b) balancing markets.

Please note, that even though a PEV aggregator does present a controllable/flexible load we expli-
citly do not capture its potential involvement in the reserve and the regulation markets, as currently
it remains unclear, if the fast response equipment needed for such involvement can be economically
justified.

Firstly, decisions related to weekly futures contracting are taken prior to knowing the market
outcome of the subsequent clearings, i.e. up to hDAMd1 − 1, one hour prior to the first day-ahead
market clearing of the week. Secondly, decisions considering day-ahead market bids have to be
taken. The day-ahead market covering energy transactions, which are effective during the whole
day d, is cleared at a certain hour hDAMof day d−1, i.e. up to Nh−hDAM +Nh hours prior to the
respective real time period. This, in fact, is the justification for adjustment and balancing markets
which allow the market agents to carry out corrective transactions in the form of last-minute energy
adjustments to meet the futures and day-ahead market commitments and from a system perspective
to guarantee the real time energy balance between generation and demand. This third market in
the here presented decision framework is cleared slightly before each period h of day d. It is herein
assumed that the balancing prices as well as the resource unavailability are perfectly known to the
decision maker at tB , the time of trading in the balancing market for the following hour. In Fig. 3
a description of the sequential market clearings in a weekly market horizon are given in the form
of a time line diagram.

Hence, the decisions taken by the PEV aggregator can be categorised according to their nature
and sequence: there are here-and-now as well as wait-and-see decisions, which can be made at a
first, second or third stage.

Here-and-now decision:

• First stage:

– Futures Contracting: The PEV aggregator can take a decision on the amount of energy
procured through futures

Wait-and-see decisions:

• Second stage:

– Day-ahead market decisions: The aggregator can decide the offer curve to be submitted
to the day-ahead market operator specifying energy prices and quantities of energy, i.e.
when to produce and when to consume.

– Third stage:

6
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Figure 3: Market Clearing Structure

∗ The day-ahead prices as well as the balancing prices materialised as well as the
perfect information about the vehicle availability, the PEV aggregator can take ad-
justment/balancing market decisions: Decisions are related to the real time con-
sumption/production of each vehicle which translates into the deviations from the
energy trading commitments in the previous markets.

By means of constructing a scenario tree, Fig. 4 illustrates the sequential decisions an aggregator
takes in the above described decision and market framework.

NΩ

NΩ − 1

...

...

Scenario ω

...

...

Scenario 2
Scenario 1

Futures Contracting
up to hDAM

d1 − 1

Day-Ahead Trading
Decision at hDAM

Balancing
Decision at tB

Day-Ahead Market Prices:

λDAMh (ω) | trvd,v

Balancing Prices: %+h , %
−
h

Mobility: avd,v,h,∇drived,v,h

Figure 4: Scenario Tree: PEV Aggregator in Sequential Markets
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Energy [MWh]

Price [e/MWh]

ĒFf,1
∑2
j Ē

F
f,j

∑3
j Ē

F
f,j

EFf,1 EFf,2 EFf,3

λFf,1

λFf,2

λFf,3

Figure 5: Forward Contract Buying Curve as in [?]

Price Taker in Futures Market

For the purpose of this study, it is reasonable to consider a medium size PEV aggregator to make an
impact on the futures market pricess. Hence, it is made use of futures contracting curves to model
the price impact of the producer on the futures market as a price maker. A futures contracting
curve depicts the variation in the price with the amount of power traded similar to an inverse
demand function. We use the formulation presented in [5] to model the purchasing cost for energy
in period h as follows:

CFd,h =
∑

f∈Fd,h

∑
j∈J

λFf,j · EFh,f,j , ∀d, h. (2)

Subject to:
EFh,f,j ≤ ĒFf,j , ∀h, ∀f, ∀j, (3)

EFf =
∑
j∈J

EFh,f,j , ∀f, (4)

where Fd,h is the set of futures contracts available in period h of day d, EFh,f,j is the energy bought
from block j of contracting curve for future f . Constraints, 3and 3 assure that maximally the
available energy is bought and that for contrac f this is equal to sum of the energy bought all
blocks j. A visualization of this futures buying curve can be found in Fig. 5 .

3.2 Deviations in the Balancing Market
Theoretically, balancing markets should be cleared as close as possible to the period of physical
energy delivery so that as precisely as possible the available production means and the actual
consumption needs are known. A very good example for this is the Australian Market Design. In
this study it is therefore assumed that every PEV aggregator would attend the balancing market
with perfect information on its availability of the PEV fleet. Any market agent expecting a final
production below or above the last energy schedule resulting from trading in the DAM is commanded
to amend its energy deviations in the balancing market.

System Imbalances, δ 6= 0, can be positive or negative. Here negative energy deviation, δ < 0 is
a lower system consumption (or higher system production) than scheduled. A positive deviation,
δ > 0, analogously vice versa. The formulation for the balancing prices is similar to [?], expressed
as a linear combination of positive and negative imbalance price ratios:
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Energy [MWh]

Price [e/MWh]

Inelastic Demand

λDAMh

(a) Day-Ahead Price Formation

Energy [MWh]

Price [e/MWh]

δh > 0δh < 0

λDW
h

λDAM
h

λUP
h

λ−h = min

{
λ+
h = max

{
λ+
h = max

{

%−h =
λ−h

λDAMh

%+
h =

λ+
h

λDAMh

(b) Imbalance Price Formation

Figure 6: Market Mechanisms

%+
h =

λ+
h

λDAMh

, (5) %−h =
λ−h

λDAMh

, (6)

where λ+
h and λ−h , refer to the balancing market prices. By this definition, negative deviations

∆−h are priced with λ−h , which is only different from the day-ahead market price λDAMh in case of
δ < 0. Accordingly, positive deviations ∆+

h are weighted with the price for positive imbalances λ+
h ,

which is only different from the day-ahead market price λDAMh in case of δ > 0. This effectively
means that, when positions from the previous market have to be balanced, the balancing responsible
party, here the PEV aggregator can at the most as well off as it would have been trading all energy
day-ahead, when the system imbalance has the opposite sign compared to its own deviations. In
case the own deviation contributes to the system imbalance it is penalized by paying a higher price
for purchases or selling at a lower price for generation.

The formulation in [16], treating a wind power producer in sequential markets, is different to
the here presented one. It is modelling a net producer and energy positions are always selling in
the market, while in this formulation they are net buying positions, i.e. ∆ is of opposite sign. The
market mechanisms that drive the formation of the prices are illustrated in Fig. 6 .

4 PEV Aggregator Model

4.1 Market Involvement and Sales Revenue
The PEV aggregator and its energy storage represents a trader in the markets, buying and reselling
energy. Leaving the futures market aside for a moment and for simplicity let us assume the day-
ahead and balancing markets can be simplified to one pool price λpoolh . The PEV aggregator, not
withstanding that over all time periods it consitutes a net load to the system, it has two possible
decision alternatives for each time period h:

1. The aggregator can act as a demand consuming energy and having a net buying position in
the pool, or

2. it can act as a generator producing energy and having a net selling position in the pool,

where its pool involvement in period h is a continuous, i.e. positive for buying/consuming and
negative for selling/producing energy, variable denoted Epoolh . In the first case the aggregator buys
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energy in the pool at price λpoolh and resells it to its PEV clients for charging their batteries at an
energy price, which subsequently shall be called γch. Even though this price could have different
time resolutions imaginable2, for simplicity and without loss of generality, it here is represented as
a constant energy price throughout the entire time horizon. Hence the PEV aggregator’s revenue
in time period h is then:

Epoolh ·
(
γch − λpoolh

)
. (7)

In the second case however, it buys energy from its clients, which is then sold in the pool. It is
sensible to assume that the price for discharging energy, which subsequently shall be called γdch, is
significantly higher than γch, because it is sensible to assume that the reservation price of energy
lies above the cost of charging the battery and using the PEV clients’ battieres for discharging
has a - potentially prohibitively burdensome - cost of degradation. This cost is usually modelled
as a function of the depth of the discharge, however this study does not go into the details of
costs stemming from battery capacity degradation and hence simplifies this cost to a constant
monetary unit per discharged energy value, which, besides energy, is the second component of γch.
Nevertheless, the revenue of the aggregator with a net selling position in the pool in time period h
is then:

Epoolh · (γdch − λpoolh ). (8)

If, for computational reasons, the continuous character of the pool involvement is relaxed and Epoolh

accordingly split up in two non-negative components, one in case of a buying Epool, chh and one in
case of a selling Epool, dchh position, such that the linear expression holds: Epoolh = Epool chh −Epool dchh .
Then, the sales revenues of Eq. (7) and Eq. (8) can be jointly described by:

Epool, chh ·
(
γch − λpoolh

)
+ Epool, dchh ·

(
λpoolh − γdch

)
, (9)

as in the presence of charging and discharging inefficiencies ηch, ηdch, the two addends of Eq. (9)
are only nonzero in the same period h for sub-optimal solutions of the profit maximisation problem.

Continuing to relax simplifying assumptions, let the pool prices and energy quantities now be
differentiated into components of the sequential markets. Consistently, λDAMh denotes the price,
EDAM, ch
h and EDAM, dch

h the non-negative energy quantities in case of a buying and selling position
committed in the day-ahead market, respectively. Note that, again the linear expression EDAMh =

EDAM, ch
h − EDAM, dch

h , holds. Furthermore, let ERTh be the real time, physical energy delivery in
period h. Then, the total deviation between day-ahead market and balancing market can be denoted
by ∆h = ERTh − EDAMh . In other words, for instance if at the time of the physical delivery energy
consumption is greater than the previously committed buying position in the day-ahead market,
there is a positive deviation, which has to be balanced via purchases. There are more possible
cases however. Therefore, the continuous variable ∆h again is expressed by a linear combination of
positive and negative deviations: ∆h = ∆+

h −∆−h . Hence the following logical equivalence:

∆h = ERTh − EDAMh

⇐⇒
(
∆+
h −∆−h

)
=

(
ERT,h

ch − ERT,h
dch
)
−
(
EDAM, ch
h − EDAM, dch

h

)
, (10)

which allows 23 = 8 different combinations of the three addends (ignoring the do-nothing cases
for which either of the three addends is zero). Tab. 1 and Fig. 7 visualise the 6 possible system
outcomes. Note that combinations iii and vi are infeasible and already covered by combinations iv
and vii, therefore they are cancelled out.

2Possible designs include: flat energy tariff, two-, or three-step time-of-use, hourly varying, at the highest the
time resolution of the pool price representation, or if indexed to pool price, an (expected) market price plus fee.
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combinations ∆h ERTh EDAMh

i + ch ch
ii − ch ch

��iii �+→ − dch ch
iv − dch ch
v + ch dch

��vi �−→ + ch dch
vii + dch dch
viii − dch dch

Table 1: Case Table and Resulting Deviations

Physical Charge [MWh]

Physical Discharge [MWh]

echh

∆+

i

EDAM,ch
h

echh

∆−

ii

edchh

∆−

iv

EDAM,ch
h echh

∆+

v

EDAM,dch
h

edchh

∆+

vii

edchh

∆−

viii

EDAM,dch
h

Figure 7: Graphical Visualisation of Possible Deviations
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4.2 Expected Profit
As stated above, the objective of the PEV-aggregator is to maximise its expected profits from
trading energy in the above mentioned trading floors: Futures, Day-ahead and Balancing Market,
to sell and resell it to its clients in real time. In the following the expected profit is broken down
by market involvement and energy exchanging entity.

Expected Profit from Day-Ahead Market Transactions

The formulation for the expected profit from day-ahead market transactions for every period h and
every day d in a scenario probability weighted sum of differences in selling (revenue) and buying
(cost) position, in terms of energy quantities, multiplied by the day-ahead market prices over all
scenarios, is hence:

E
{

ΠDAM
ω

}
=

∑
ω∈Ω

∑
d∈D

∑
h∈H πω · ΠDAM

d,h,ω

=
∑
ω∈Ω

∑
d∈D

∑
h∈H πω ·

[
EDAMd,h,ω · λDAMd,h,ω

]
=

∑
ω∈Ω

∑
d∈D

∑
h∈H πω ·

[(
EDAM,dch
d,h,ω − EDAM,ch

d,h,ω

)
· λDAMd,h,ω

]
. (11)

In day-ahead electricity markets it is common to submit not only one single energy quantity
which as a consumer (producer), one is willing to buy (sell) in a given time period h. Rather, a step-
wise block curve of maximum (minimum) buying (selling) prices as a function of the corresponding
energy quantities. Offers for selling are usually commanded to be of a non-decreasing nature [13],
while it is supposed that bids for buying energy have to be non-increasing. In the here described
stochastic program of a PEV aggregator’s profit on day d, obviously, different scenarios of day-ahead
prices,

{
λDAMd,h,1 , λ

DAM
d,h,2 , . . . , λ

DAM
d,h,NΩ−1, λ

DAM
d,h,NΩ−1

}
result in different day-ahead market involvements{(

EDAM, ch
d,h,1 − EDAM, dch

d,h,1

)
,
(
EDAM, ch
d,h,2 − EDAM, dch

d,h,2

)
, . . . ,(

EDAM, ch
d,h,NΩ−1 − E

DAM, dch
d,h,NΩ−1

)
,
(
EDAM, ch
d,h,NΩ

− EDAM, dch
d,h,NΩ

)}
,

which can represent either a buying or a selling position. It is therefore reasonable to enforce two
additional constraints, (12) and (13), to assure that the bidding in the day-ahead market fulfills the
above described requirements:

EDAM, dch
d,h,ω ≤ EDAM, dch

d,h,ω′ , ∀d, h, ∀ω, ω′ : ODAM (d, h, ω) + 1 = ODAM (d, h, ω′) , (12)

EDAM, ch
d,h,ω′ ≤ EDAM, ch

d,h,ω , ∀d, h, ∀ω, ω′ : ODAM (d, h, ω) + 1 = ODAM (d, h, ω′) . (13)

ODAM is used to sort the day-ahead prices associated with each period in an increasingly manner
for each scenario ω. Therefore, element OD(d, h, ω) represents the position of day-ahead price λDAMd,h,ω

over all scenarios ω ∈ Ω. If this price is the smallest one, then OD(d, h, ω) = 1. On the contrary, if
λDAMd,h,ω corresponds to the largest price, OD(d, h, ω) is equal to the number of different day-ahead
prices in period h. Considering a given time period, identical day-ahead prices are associated with
equal values in the matrix ODAM , i.e. if λDAMd,h,ω = λDAMd,h,ω′ then O

D(d, h, ω) = OD(d, h, ω).
The same justification for constraints similar to (12) and (13) could be given for the subsequent

balancing market. However, since the focus of this research lies on finding the optimal DAM offers
and bids for the PEV aggregator, the simplification of single optimal energy quantities in the
subsequent balancing markets is chosen.

Finally the non-anticipativity constraints (14) and (15) ensure that, those scenarios that share
a common history up until the DAM decision have to yield the same solution. Even though DAM
involvement can be DAM-scenario specific (DAM decision without information about DAM prices),
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equal day-ahead market prices provide equal day-ahead transactions indifferent of the subsequent
decisions at the third stage are:

EDAM, ch
d,h,ω = EDAM, ch

d,h,ω′ , ∀d, h, v, ∀ω, ω′ :
(
λDAMd,h,ω = λDAMd,h,ω′

)
, (14)

EDAM, dch
d,h,ω = EDAM, dch

d,h,ω′ , ∀d, h, v, ∀ω, ω′ :
(
λDAMd,h,ω = λDAMd,h,ω′

)
. (15)

Note that the decision variables relating to the Futures Market involvement are declared as node-
variable, i.e. without a scenario index, which, contrary to the explicit scenario-variable formulation
of the DAM market related decision variables, is why non-anticipativity is implicitly ensured. De-
cisions related to balancing market transactions are regarded to be wait-and-see decisions, i.e. are
taken with full information.

Expected Profit from Balancing Market Transactions

Similarly, the expected profit from balancing market transactions for every period h and every
day d is formulated. It is also the scenario probability weighted sum of differences in positive and
negative energy deviations, multiplied by the negative and positive balancing market prices over all
scenarios:

E
{

ΠB
ω

}
=

∑
ω∈Ω

∑
d∈D

∑
h∈H πω · ΠB

d,h,ω

=
∑
ω∈Ω

∑
d∈D

∑
h∈H πω ·

[
∆+
d,h,ω · λ

−
d,h,ω + ∆−d,h.ω · λ

+
d,h,ω

]
, (16)

where both transactions represent a revenue.

Expected Profit from Client Side Transactions

On the client side, the transactions again depend on the real time net buying and selling decision
of the markets, which translate into a discharge of the The expected profit is hence the profit
formulation for every period h and every day d in a scenario probability weighted sum over all
scenarios:

E
{

ΠC
ω

}
=

∑
ω∈Ω

∑
d∈D

∑
h∈H πω · ΠC

d,h,ω

=
∑
ω∈Ω

∑
d∈D

∑
h∈H πω ·

[∑
v∈V

ERT, chd,v,h,ω · γ
ch −

∑
v∈V

ERT, dchd,v,h,ω · γ
dch

]
. (17)

Total Expected Profit for a PEV Aggregator with Multi-Market Involvement

Combining Equations 2, 11, 16 and 17 for the futures procurement cost, as well as expected day-
ahead market, balancing market and client side profits, the total expected profit fora PEV aggreg-
ator with multi-market involvement is hence:

E
{

ΠTotal
ω

}
= −

∑
d∈D

∑
h∈H C

F
d,h +E

{
ΠDAM
ω

}
+ E

{
ΠB
ω

}
+ E

{
ΠC
ω

}
= −

∑
d∈D

∑
h∈H

∑
f∈Fd,h

∑
j∈J λ

F
f,j · EFf,j +

∑
ω∈Ω

∑
d∈D

∑
h∈H

πω

·(
[(
EDAM,dch
d,h,ω − EDAM,ch

d,h,ω

)
· λDAMd,h,ω

]
(18)

+
[
∆+
d,h.ω · λ

−
d,h,ω + ∆−d,h.ω · λ

+
d,h,ω

]
+

[∑
v∈V

ERT, chd,v,h,ω · γ
ch −

∑
v∈V

ERT, dchd,v,h,ω · γ
dch

]
)
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4.3 Energy Balance
The total expected profit function, expressed in Eq. (18) contains decision variables that need to
be constraint according the physical energy exchanged. Two energy balances are formulated, one
for the market side and one for the client side.

Similar to Eq. (10), the equality linking the different markets to each other is formulated on an
hourly basis to reflect the time granularity of the trading floors:

∀d, h, ω : (19)(∑
v∈V

ERT, chd,v,h,ω −
∑
v∈V

ERT, dchd,v,h,ω

)
=

∑
f∈Fd,h

∑
j∈J

EFf,j +
(
EDAM, ch
d,h,ω − EDAM, dch

d,h,ω

)
+
(

∆+
d,h,ω −∆−d,h,ω

)
,

where the real time physical energy exchanged needs to equal the transactions in all three consec-
utive markets.

On the client side, however, the energy balance is formulated on a vehicle basis:

ERT, dchd,v,h,ω + ERT, chd,v,h,ω ≤ avd,v,h,ω · cc, ∀d, h, ω, ∀v, c : vcv,c = 1, (20)

where charging or discharging can only be performed while the vehicles are available. Furthermore,
the vehicle specific battery state of charge is expressed by the following inter-temporal energy
balance:

∀d, h, ω, ∀v, c : vcv,c = 1 : (21)

SOCd,v,h,ω = SOCd,v,h−1,ω +
(
ERT, chd,v,h,ω · η

ch
c

)
−

(
ERT, chd,v,h,ω

ηdchc

)
−∇d,v,h,ω.

Subject to:
∀v, c : vcv,c = 1 :

SOCd,v,h,ω ≤ bcc, ∀d, h, ω.

In Eq. (21), given an initial level and subject to the available battery capacity constraint, the
state-of-charge in one our SOCd,v,h,ω is equal to the state of charge in the previous hour, plus

the inefficient charges
(
ERT, chd,v,h,ω · ηchc

)
, less the inefficient discharges

(
ERT, dchd,v,h,ω

ηdchc

)
, and less the

reductions due to driving, given by ∇d,v,h,ω.
The interactions of the PEV aggregator with all the respective trading platforms and on the

client interface are once again summarised in Fig. 8 .

4.4 Risk Modeling
To control the volatility of the profit function, i.e. avoiding extremely low profits or high losses,
the aggregator could make use of a risk measure. Here, in (22) and (23) the typical conditional
value-at-risk (CVaR) formulation with significance level α is used, where the objective function is
extended by a weighting factor β ∈ [0, ∞+]:
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PEV Aggregator

Futures Market
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Ech · λDAM

Edch · λDAM
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d,h,ω · λ

−
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+
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v∈V e
ch
d,v,h,ω · γch

∑
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dch
d,v,h,ω · γdch

Figure 8: PEV Multi-Market and Client Interactions
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Figure 9: CVaR as a Coherent Risk Measure

Maximise {ıω, ζ}

β·CV aR = β ·

(
ζ − 1

1− α
∑
ω∈Ω

πω · ıω

)
(22)

Subject to:∑
d∈D

∑
h∈H

CFd,h −ΠDAM
ω −ΠB

ω −ΠC
ω

+ζ −ıω ≤ 0, ∀ω (23)
ıω ≥ 0, ∀ω.
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4.5 Full Formulation

Maximise {EFh,f,j , EDAM,dchd,h,ω ,−EDAM,chd,h,ω ,∆+
d,h,ω,∆

−
d,h,ω, E

RT, dch
d,v,h,ω , E

RT, ch
d,v,h,ω, ıω, ζ}

E
{

ΠTotal
d,h,ω

}
+β·CV aR

= −
∑
d∈D

∑
h∈H C

F
d,h + E

{
ΠDAM
d,h,ω

}
+ E

{
ΠB
d,h,ω

}
+ E

{
ΠC
d,h,ω

}
+β·CV aR

CFd,h =
∑

f∈Fd,h

∑
j∈J

λFf,j · EFh,f,j , ∀d, h

EFh,f,j ≤ ĒFf,j , ∀f, ∀j

EFf =
∑
j∈J

EFh,f,j , ∀f

ΠDAM
d,h,ω =

(
EDAM,dch
d,h,ω − EDAM,ch

d,h,ω

)
· λDAMd,h,ω

ΠB
d,h,ω = ∆+

d,h.ω · λ
−
d,h,ω + ∆−d,h.ω · λ

+
d,h,ω

ΠC
d,h,ω =

∑
v∈V

ERT, chd,v,h,ω · γ
ch −

∑
v∈V

ERT, dchd,v,h,ω · γ
dch

∀d, h, ω :(∑
v

ERT, chd,v,h,ω −
∑
v

ERT, dchd,v,h,ω

)
=

∑
f∈Fd,h

∑
j∈J

EFh,f,j +
(
EDAM, ch
d,h,ω − EDAM, dch

d,h,ω

)
+
(

∆+
d,h,ω −∆−d,h,ω

)

ERT, dchd,v,h,ω + ERT, chd,v,h,ω ≤ avd,v,h,ω · cc, ∀d, h, ω, ∀v, c : vcv,c = 1

SOCd,v,h,ω = SOCd,v,h−1,ω +
(
ERT, chd,v,h,ω · η

ch
c

)
−

(
ERT, dchd,v,h,ω

ηdchc

)
−∇d,v,h,ω, ∀d, h, ω, ∀v, c : vcv,c = 1

SOCd,v,h,ω ≤ bcc, ∀d, h, ω, ∀v, c : vcv,c = 1

EDAM, dch
d,t,ω ≤ EDAM, dch

d,t,ω′ , ∀d, h, ∀ω, ω′ : O
(
λDAMd,t,ω

)
+ 1 = O

(
λDAMd,t,ω′

)
EDAM, ch
d,t,ω′ ≤ EDAM, ch

d,t,ω , ∀d, h, ∀ω, ω′ : O
(
λDAMd,t,ω

)
+ 1 = O

(
λDAMd,t,ω′

)
EDAM, ch
d,t,ω = EDAM, ch

d,t,ω′ , ∀d, h, ∀ω, ω′ : λDAMd,t,ω = λDAMd,t,ω′

EDAM, dch
d,t,ω = EDAM, dch

d,t,ω′ , ∀d, h, ∀ω, ω′ : λDAMd,t,ω = λDAMd,t,ω′
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CV aR =

(
ζ − 1

1− α
∑
ω∈Ω

πω · ıω

)

∑
d∈D

∑
h∈H

CFd,h + ζ −ΠDAM
ω −ΠB

ω −ΠC
ω − ıω ≤ 0, ∀ω

ıω ≥ 0, ∀ω.

5 Preliminary Stylized Example
In order to test the above presented model capability, preliminarily, a stylized example could be
studied as follows.

5.1 Description
Three runs:

1. Stochastic Load:

• No control over vehicles.

• EDAM, dch
d,t,ω′ = ∇d,h,ω: constraint 20 is relaxed

• Markets: Access to Futures and DAM but no Balancing

2. Real-time trading with direct load control (DLC):

• Control over vehicles

• Markets: Trading in a) Balancing or b) Day-Ahead Market only

3. Full Model:

• DLC

• All markets

• ⇒Value of control and flexibility

5.2 Input
The market horizon only spans the 24 hours of the first day of the week, i.e. Monday, hence the
subscript d can be omitted for this example case. In the following the input data defining the
example case in terms of Futures Contracting Data, Day-Ahead Market Price Scenarios, Balancing
Market Price Scenarios, and the Mobility and Fleet Unavailability Scenarios, is presented. Finally
the resulting scenario tree is illustrated.

Futures Contracting Data

The futures contracting data of this stylized example consists of three possible futures contracts,
each spanning over the entire market horizon of 24h and having three equally sized blocks with a
maximal contracting quantitiy of 100 [kWh].
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Table 2: PEV Aggregator Example: Futures Contracting Curve Data

Contract # f Duration λFf 1 λFf 2 λFf 3 ĒFf,1 ĒFf,2 ĒFf,3
[e/MWh] [kWh]

1 24h 70 80 90 30 30 30
2 24h 75 80 85 30 30 30
3 24h 71 73 75 30 30 30

Table 3: PEV Aggregator Example: Day-Ahead Market Scenario Price Data

Sub-Scenario Probability E
{
λDAM

}
# ω πω [e/MWh]

DAM1 0.2 45
DAM2 0.4 55
DAM3 0.4 65

Day-Ahead Market Price Scenarios

The day-ahead market price scenarios, constituted by vectors of 24 hourly price elements are only
indicated by means of the average price E

{
λDAM

}
, as depicted in 10, all following the same typical

diurnal price profile with high maximum price of E
{
λDAM

}
+ 20% e/MWh occurring at night

(19h), low minimum price of E
{
λDAM

}
− 30% e/MWh occurring during the early morning hours

(3h).

Client Side Prices

The client side price parameters, which are also indicatd in 10, are 70 and 90 e/MWh for γch and
γdch, respectively.

Balancing Market Price Scenarios

Suppose for simplicity that the balancing market outcome vectors of the considered day d, %+
h

and %−h , can for all hours h be conveniently reduced to one scalar each for positive and negative
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Figure 10: PEV Aggregator Example: Day-Ahead Market Scenario Price Profiles
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Table 4: PEV Aggregator Example: Balancing Market Price Scenarios

Sub-Scenario # ω Probability πω %+ %−

B1 0.6 1 1.5
B2 0.4 0.9 1

Table 5: PEV Aggregator Example: Fleet Characteristics [9],[12]

Parameter PHEV c = 1 BEV c = 2

Available Battery Capacity bcc [kWh] 10 20
Connection Capacity cc [kW] 3.6 3.6
Driving Speed ϑc [km/h] 30 30

Driving efficiency ηdrivec [kWh/km] 0.14 0.16
Charging efficiency ηchargec [p.u.] 0.93 0.93

deviation as depicted in 4. That is, equally for each hourly day-ahead market price, the system has
a probability (πB1 = 0.6) to deviate positively and one to deviate negatively (πB2 = 0.4).

Mobility / Fleet Unavailability Scenarios

Suppose a small fleet of 5 vehicles, which are made up of 100% Plug-in Hybrid Electric Vehicles
(PHEVs) and 0% full Battery Electric Vehicles (BEVs), whose characteristics are shown in 5 based
on [?] and [?]. The unavailability is depicted in the graphical visualizations of avMonday,v,h,ω and
∇Monday,v,h,ω. Initial SOCs are, in both mobility sub-scenarios at 0.7 and 0.6 for classes 1 and 2
respectively. Mobility sub-scenarios 1 and 2 are equiprobable and hence occur both with a chance of
50%. In order to obtain the mobility scenarios the mobility scenario generation algorithm (detailed
in the appendix) is executed to generate 100 scenarios. To find the extreme cases, those scenarios
yielding the maximum and minimum values for variances (along the time dimension across 24h) in
cumulated SOC reduction.

Scenario Tree for Stylized Example

In Fig. 14 an overview of the sub-scenario to full scenario composition with according probabilities
is given.

Different Scenario Trees are Tested

Depending on the assumptions about what knowledge is available at what decision stage different
scenario trees can be constructed. Besides the known base case with full price information at
market involvement shwon in 15a, two variants are introduced. Fig. 15b shows an illustration of
the scenario tree with DAM offer curve constraints and Fig. 15c shows an illustration of the scenario
tree with DAM offer curve constraints as well as non-anticipativity of Balancing Prices even though
information about mobility is available the decision of balancing market involvement.

5.3 Expectation - Hypothesis Formulation
• Futures Data

– calibrated to show the effect of adding certainty when increasing value at risk weights.
The more risk averse the aggregator the more futures contracts are included in the
procurement portfolio. Even though the prices are higher and therefore expected profits
are lower, the decrease in profit variance is appreciated.
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Figure 14: Scenario Probabilities

– are in the range between resale energy price γch and energy compensation price γdch,
and above the expected energy price of 57 e/MWh – this means in the futures market,
energy can be bought at prices that on the whole should not justify reselling of energy
bought from futures (too expensive)

– on the contrary it can be expected to see a lot of buying (probably up to the upper limit)
prices might need to be calibrated to show efficient frontier

– energy quantities need to be constraint at right sizes corresponding to total demand,
constraining net energy exchange

• DAM data

– expected prices per scenario: [45.54,55.66,70.66] and overall: 57

– three price scenarios including significant spreads between diurnal min and max, also
with higher probs for the high price scenarios

– ceterus paribus: one would expect to see aggregated charging at early morning and
discharging at early evening

• Balancing data

– severe impact if 1.5 upward change→ expectation of upward dominating effect overriding
others. definitely test by isolating

• Mobility

– total demand per scenario: [35.84 1.89] kWh

– in the ubiquitous charging infrastructure case little impact of unavailability. In the
charge after last trip case bigger impact and more aligned with MID prefiltering criteria
of (Stellplatz vorhanden)

5.4 Output/Discussion
The following analyses and interprets basic model results from the example case.
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Figure 16: Illustration of Aggregated SOCs

Aggregated SOC of the Entire PEV Fleet

The expectations are met: aggregated charging appears at early morning and discharging at early
evening. However, the original presumption of no variations over of aggregated charging in different
scenarios with the same mobility profile does not hold in all its detail. In general the basic tendencies
are observed: With increasing scenario counts (higher DAM prices) the final SOC is closer to its
minimum requirement of 70%:↑ ω, ↑ λ =⇒

∑
v SOCv,24,ω → SOCmin = 0.7 · |V | · bcc. Vice versa

with decreasing scenario counts (lower DAM prices) the final SOC is closer to its maximum battery
capacity: ↓ ω, ↓ λ =⇒

∑
v SOCv,24,ω → SOCmax = |V |·bcc. However the mobility seems to override

this effect such that alternating scenarios are close to or at either one of the extremes. In the low
mobility scenarios (even scenario counter) the high availability permits charging at earlier time
steps, while in the high mobility scenarios (uneven scenario counter) the low availability commands
for late a lot of afternoon, little evening and then a lot of late night charging. Everything in
accordance with the price profiles. A detailed graphical illustration can be studied in Fig. 16.

Disaggregated SOCs of Individual PEVs in selected Scenarios

Two selected scenarios ω = 5 and ω′ = 6 who exhibit different cases of mobility, the former with
high and the latter with low unavailability, are compared to each other in terms of PEV SOCs on an
individual basis. Results comply with the intuitive expectation and the analysis of aggregated SOCs.
It can be observed that in the scenario of high unavailability, ω = 5, all vehicles are first charged
to be prepared for the subsequent SOC reductions due to driving. Charging is then accorded with
the market prices in the evening and late night. In the scenario pertaining to low unavailability,
ω′ = 6, all vehicles are charged in the first hours of the day, only vehicle 2 is being discharged due
to its driving and shortly thereafter replenished. The two sub-figures of Fig. 17 give rise to further
insights.
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Figure 17: Disaggregated SOCs of Individual PEVs

Scenario Profit Calculations

Fig. 18 provides a graphical visualisation of the different profits in all the scenarios. It can be
observed that ΠC

ω the profit on the client side, i.e. on the retail market, mainly depends on the
mobility scenario. In high mobility scenarios the profit increases because the sales volume increases
and in low mobility scenarios vice versa. According with the SOC analysis from above, scenarios
ω = 9 and ω = 11 DAM prices are so unfavouribly high that the sales volume decreases as well.
The mean value of retail client profit is E

{
ΠC
ω

}
= 2.45. On the cost side, i.e. procurement from

DAM ΠDAM
ω and futures markets Cf , the same alternation of high and low mobility scenarios and

according sales volumes can be seen. The cost of the futures purchases is constant Cf = −0.09 for
all scenarios, because as a first stage here-and-now decision it is not scenario dependent. Finally
the total profit ΠTotal

ω , as a sum of the formerly mentioned, is decreasing with the higher scenario
counts. Its expected value remains slightly positive at E

{
ΠTotal
ω

}
= 0.69.

Day-Ahead Market Involvement

The resulting day-ahead market involvement of the PEV-Aggregator can be assessed in Fig. 19.
Sub-figure a) shows the charging and sub-figure b) shows the discharging (which is currently fixed to
0). The relaxed the non-anticipativity constraints as well as increasing-DAM-bid-curve constraints
lead to the nature of the decision variable EDAM,ch

h,ω . The bids have to be the same for the batches
of scenarios ω = {1, 2, 3, 4}, ω = {5, 6, 7, 8} and ω = {9, 10, 11, 12}, because they respectively yield
the same DAM prices: λDAMh,w .

When introducing imbalances:

In general it is important to remember that the ESS can perform two services: inter-temporal
energy arbitrage within either the day ahead, or within the balancing market as well as inter-
market transactions, here in the form of balancing energy to other participants. The second service
is described in further detail in the following: When a system imbalance δ 6= 0 occurs, two situations
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are imaginable. Either the electric power system experiences a positive deviation, δ > 0, (from the
demand side) or a negative one, δ < 0.

In case of a positive deviation at real time physical delivery there is an excess demand in the
system with respect to a previous market clearing. This results in a positive balancing market price
higher or equal to the DAM, λ+

h ≥ λDAMh , while the negative balancing market price remains at
DAM level λ−h = λDAMh . For a consumer/retailer representing a net demand with a buying position,
this means that an under-consumption compared to the DAM clearing ∆−hwould be remunerated
with λ+

h , compared to trading the same energy in the DAM leading to a decreased procurement
cost of ∆−h ·

(
λ+
h − λDAMh

)
= ∆−h ·

(
%+
h − 1

)
, which is positive for large enough system imbalances.

An over-consumption, on the other hand, would result in a penalisation of the magnitude ∆+
h ·(

λ−h − λDAMh

)
= ∆−h ·

(
%+
h − 1

) δ>0

= ∆−h · (1− 1) = 0, as opposed to procuring the same energy in
the day-ahead market. Evidently, these situations are mutually exclusive.

Accordingly, in case of a negative system deviation at real time physical delivery and a lack
of demand occuring with respect to the DAM clearing, δ < 0, resulting in a positive balancing
market price equal to the DAM, λ+

h = λDAMh , and the negative balancing market price greater or
equal to DAM level λ−h ≥ λDAMh . In this case, the market agents also have two options. They can
either favour the system by deviating with opposite sign and be remunerated with ∆+

h · λ
−
h , i.e.

consuming more than scheduled in DAM and, as a consumer, having an a decreased procurement
cost of ∆+

h ·
(
λ−h − λDAMh

)
= ∆+

h ·
(
%−h − 1

)
, which is positive for large enough system imbalances. Or,

they can consume less, which would result in a penalisation of the magnitude ∆−h ·
(
λ+
h − λDAMh

)
=

∆−h ·
(
%+
h − 1

) δ<0

= ∆−h · (1− 1) = 0, as opposed to procuring the same energy in the day-ahead
market.

Moreover:

• All runs performed on Windows XP Machine Intel©Core™i7 CPU 860 at 2.8 GHz, 3.34 GB
RAM with MatLab(2011b)-GAMS(23.8)-Hybrid and CPLEX solver.

• Solving time of LP: around 3-8s per iteration for runs of type 2 b) with 27k rows and 40k
columns

Potential output calculations could include:

• Expected profit

• Profit standard deviation

• CVaR vs. Expected Profit

• Expected generation and sales

– expected DAM generation/consumption (over different runs)

– Expected BM generation/consumption

• Adjusted pdfs of the profit for arrays of betas

• VSS and EVPI?

• Certainty gain effect?

6 Case Study
Same as stylized example but scenarios to full extent.
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7 Preliminary Conclusions, A Tentative Summary
1. Detailed formulation of the self scheduling of a PEV aggregator taking into account uncer-

tainty about prices and mobility.

2. Aggregated Vehicle Batteries are likely to present a physical hedge against market price risk .

3. The flexibility of the storage may – even though subject to conservative capacity connection
constraints – be compared to the risk of unavailability.

4. Balancing markets may provide an augmented opportunity for low risk profit.

Main Assumptions

Limitations of the Approach:
1. Two state mobility world:

(a) Ubiquitous Charging Infrastructure [could be relaxed saying vehicles are only available
after last trip of the day, assuming that journey’s mobility always finishes at a charging
outlet under the aggregator’s control]

(b) Mobility is most likely not equal to actual connection behaviour

2. Communication and Control

(a) Real time load control
(b) Roaming model: vehicles have ID and access to all charging points

3. Statistical independence of the stochastic mobility processes

4. Perfect information about the balancing prices at real time

5. Market assumptions:

(a) DAM price in EEX always positive
(b) Futures contracts in EEX on a monthly basis

Future Work
• Include selling/buying price decision and according elasticity of the demand (as a function of

the vehicle fleet size)

• Full size realistic case study:

– Acquiring market data for futures, day-ahead and balancing market prices
– Fitting SARIMA models for prices and scenario generation
– Mobility scenario generation (improvements and alternative approaches: e.g. [18], [12])
– Scenario Reduction for exogenous uncertainty with SCENRED [15]

• Include capacity degradation of PEV batteries

• Introduce locational pricing in the form of demand rate type use-of-system charges based on
spare capacity

• Using options for hedging against idiosyncratic risk [17]

27



Acknowledgement
Ilan Momber is a candidate of the Erasmus Mundus Joint Doctoral Programme on Sustainable
Energy Technologies and Strategies (SETS) funded by the European Commission’s Directorate-
General for Education & Culture. The author would like to express gratitude towards all partner
institutions delivering the joint degree, particularly including the the Universidad Pontificia Comil-
las (UPCO) in Spain, the Royal Institute of Technology (KTH) in Sweden, and Delft University of
Technology (TUDelft) in The Netherlands.

Many thanks are directed at the supervisors from the REDES group, notably Pablo Frías and
other helpful consultants, above all, Michel Rivier and Germán Morales.

28



Appendix

Supplemental Notation for Mobility Scenario Generation Algorithm
t ∈ T Index of trips on a given day d.

Input

πtraveld The probability of travel on a certain day d, ∈ [0, 1].

πstartHd,h The probability of starting a trip on a specific day d and hour h, ∈ [0, 1].

πranged,l The probability of a trip to be of a certain length l on a specific day d, ∈ [0, 1].

ntravgd The expected number of trips for each of the moving vehicles on a given day, ∈ R+.

Output

trvd,v Binary matrix indicating availability of a vehicle v on a certain day d, ∈ {0; 1}.

shrd,v,t Integer matrix indicating the starting hour of a trip t by vehicle v on a certain day d,
∈ H.

rhrd,v,t Integer matrix indicating the return hour of a trip t by vehicle v on a certain day d,
∈ H.

lgtd,v,t Positive real matrix indicating the length of a trip t by vehicle v on a certain day d,
∈ R+.

Algorithm for Mobility Scenario Generation
An overview of the algorithm is provided in form of a flow chart in20 and an indication of time
performance given in 21. The total number of scenarios characterizing the scenario tree for any trip
of one vehicle on a given day is hence NstartH

Ω ×Nrange
Ω = 24×21 = 501. However, since vehicles are

likely to do more than one trip per day, each availability/mobility scenarios is generated following
the subsequent algorithm.

• Let trvd,v be a binary matrix with the dimensions |d| ×Nv

– For each element of trvd,v independently draw a realization of λstart = λstart (ω) and
assign a binary value indicating whether vehicle v leaves on the respective day d. A
vehicle, which does not leave results in availability in terms of system connection, hence
the coding is 1 for availability and 0 for non availability.

– Let shrd,v,t be an integer matrix with the dimensions |d| ×Nv ×maxddntravgd e
∗ For each element of shrd,v,t independently draw a realization of λstartH = λstartH (ω)

and assign the trip’s starting hour to the respective element, if and only if the vehicle
is travelling on the respective day

– Let lgtd,v,t be an integer matrix with the dimensions |d| ×Nv ×maxddntravgd e
∗ For each element of lgtd,v,t independently draw a realization of λrange = λrange (ω)

and assign the trip length to the respective element, if and only if the vehicle is
travelling on the respective day

– Plausibility checks have to be performed for each day’s mobility as follows:

∗ For each d and each v :
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ω ← 0 ; trvd,v,ω ← 0

ω ← ω + 1 ; d← 1

d ≤ |D|

v ← 1

v ≤ |V |

trvd,v,ω ← λtravel (ω) v ← v + 1

d← d+ 1

shrd,v,t,ω ← 0 ; d ← 1

d ≤ |D|

v ← 1

v ≤ |V |d← d+ 1

trvd,v,ω 6= 0

t← 1

t ≤ dntravgd e

shrd,v,t,ω ← λstartH (ω)t← t+ 1

Sort shrd,v,t,ω along t

shrd,v,t,ω 6= shrd,v,tt,ω

v ← v + 1

lgtd,v,t,ω ← 0 ; d← 1 ;
rhrd,v,t,ω ← 0

d ≤ |D|

v ← 1

v ≤ |V |d← d+ 1

trvd,v,ω 6= 0

t← 1

t ≤ dntravgd e

lgtd,v,t,ω ← λrange (ω) ;
rhrd,v,t,ω ← d(shrd,v,t,ω + lgtd,v,t,ω/vc)e

t← t+ 1

(rhrd,v,t−1,ω) > (shrd,v,t,ω) OR
(rhrd,v,t,ω) > |H|

t← 1

v ← v + 1

avd,v,h,ω ← 1 ; d← 1 ;
∇d,v,h,ω ← 0

d ≤ |D|

v ← 1

v ≤ |V |d← d+ 1

t← 1

t ≤ dntravgd e

h← 1

h ≤ |H|

v ← v + 1

t← t+ 1

shrd,v,t,ω ≤ h < rhrd,v,t,ω

avd,v,h,ω ← 0

h = rhrd,v,t,ω

∇d,v,h,ω = lgtd,v,t,ω · ηdrivec h← h+ 1

ω ≤ |Ω|
trvd,v,ω;shrd,v,t,ω;
rhrd,v,t,ω;lgtd,v,t,ω;
avd,v,h,ω;∇d,v,h,ω;

πtraveld,v ;πstartHd,h ;
πranged,l ;ntravgd ; |Ω|;→
π(ω) = P (ω|λ = λ(ω);
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Figure 20: Flow Chart of Mobility Scenario Generation Algorithm
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Figure 21: Time Performance of Mobility Scenario Generation Algorithm: Computation Time vs.
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Table 6: Expected Trips of Moving Vehicles [3, 10, 11]

Monday Weekday Friday Saturday Sunday
ntravgd 3.95044 3.96463 4.21066 3.59744 2.8098

Table 7: Travel Probability πtraveld [3, 10, 11]

πtraveld Monday Weekday Friday Saturday Sunday
Travel 0.6273 0.6586 0.6494 0.5499 0.4066

No Travel 0.3727 0.3414 0.3506 0.4501 0.5934

· sort the random start times of the trips of a vehicle on a certain day in ascending
order.

· For for each t from 0 to dntravgd e:
· increase trip counter t← t+ 1

· in case t < dntravgd e :

· while shrd,v,t+lgtd,v,t/ϑ > shrd,v,t+1 redraw independent realizations of λrange =
λrange (ω) for lgtd,v,t

· and in caset = ntravgd e :

· while shrd,v,t + {ntravgd } · lgtd,v,t/ϑc > Nh redraw independent realizations of
λrange = λrange (ω) for lgtd,v,t , where {ntravgd } denotes the fractional part of the
last trip defined by the formula {ntravgd } := ntravgd − bntravgd c and b·c (d·e) de-
notes the floor (ceiling) function mapping ntravgd to the largest(smallest) integer
smaller (larger) than ntravgd . Hence, 0 < {·} < 1.

· The second while-loop assures the returns before the end of the day. Hence,
for simplification the number of cars disconnected at the beginning of a diurnal
24-hour period (midnight of the previous day) is always equal to the number of
cars disconnected at the end of it (midnight of current day)

– Evaluate rhrd,v,t = shrd,v,t + lgtd,v,t/ϑc element-wise for obtaining return times, which
results in rhrd,v,t > shrd,v,t, ∀d, v, h.

– Let avd,v,h be a binary matrix of dimensions Nd×Nv ×Nh indicating the availability of
a vehicle in a certain hour and initialize as available: avd,v,h = 1, ∀d, v, h.

∗ For each d and each v and t from 1 to dntravgd e and each h:
· if h = shrd,v,t ∧ h < rhrd,v,t: set avd,v,h = 0

As stated in the introduction the mobility of the PEV fleet does not only determine the unavail-
ability to the system, it also characterizes the electricity demand of each vehicle. From the above
information given by the realizations of the stochastic processes it is possible to derive the energy
demand:

• For a given trip of distance lgtd,v,t performed by a type of car c the trip’s electricity con-
sumption while driving, and constituting the reduction in state-of-charge (SOC) of the at
reconnecting hour rhrd,v,t reconnecting battery is calculated for each d and each v and t from
1 to dntravgd e and each h:

– if h = rhrd,v,t: set ∇drived,v,h = lgtd,v,t ·
(
ηdrivec /ηchargec

)
, where ∇drived,v,h indicates the SOC

loss due to the previous trip’s driving

lxix



Table 8: Trip Start Hour Probability πstartHd,t [3, 10, 11]

Hour h Monday Weekday Friday Saturday Sunday
1 1.212E-03 1.893E-03 4.088E-03 6.031E-03 2.429E-03
2 1.943E-04 1.192E-03 3.262E-03 2.838E-03 1.242E-03
3 1.170E-03 6.696E-04 1.499E-03 2.889E-03 1.277E-03
4 7.647E-04 1.353E-03 2.873E-03 1.976E-03 4.130E-03
5 3.080E-03 5.862E-03 5.984E-03 1.384E-03 2.979E-03
6 1.815E-02 2.242E-02 1.717E-02 5.854E-03 5.785E-03
7 4.940E-02 5.141E-02 4.212E-02 1.305E-02 6.236E-03
8 7.007E-02 7.309E-02 6.572E-02 2.744E-02 1.827E-02
9 6.028E-02 5.966E-02 6.199E-02 6.892E-02 4.338E-02
10 6.578E-02 5.658E-02 6.035E-02 1.143E-01 6.801E-02
11 6.034E-02 5.627E-02 6.190E-02 1.199E-01 6.865E-02
12 5.684E-02 6.026E-02 5.716E-02 1.029E-01 8.973E-02
13 6.083E-02 6.525E-02 6.572E-02 9.099E-02 7.824E-02
14 5.863E-02 5.981E-02 6.860E-02 7.072E-02 8.667E-02
15 5.943E-02 6.264E-02 7.702E-02 6.825E-02 9.260E-02
16 7.976E-02 7.260E-02 8.355E-02 6.136E-02 7.352E-02
17 8.835E-02 9.267E-02 8.378E-02 4.296E-02 7.509E-02
18 8.757E-02 8.735E-02 7.397E-02 4.405E-02 7.987E-02
19 6.572E-02 6.392E-02 5.592E-02 4.967E-02 7.215E-02
20 4.480E-02 4.105E-02 4.199E-02 4.056E-02 4.310E-02
21 2.593E-02 2.561E-02 2.393E-02 2.076E-02 3.257E-02
22 2.365E-02 1.963E-02 1.802E-02 1.402E-02 2.713E-02
23 1.339E-02 1.379E-02 1.568E-02 1.801E-02 2.092E-02
24 4.665E-03 5.006E-03 7.723E-03 1.118E-02 6.036E-03

lxx



Table 9: Trip Range Probability πranged,l [3, 10, 11]

Trip Length l Monday Weekday Friday Saturday Sunday
1 2.292E-01 2.111E-01 2.246E-01 2.111E-01 2.002E-01
3 1.780E-01 1.783E-01 1.671E-01 1.783E-01 1.594E-01
5 9.996E-02 1.214E-01 1.175E-01 1.214E-01 1.187E-01
7 9.172E-02 8.147E-02 9.230E-02 8.147E-02 7.652E-02
9 5.679E-02 6.149E-02 6.245E-02 6.149E-02 5.714E-02

11.25 3.471E-02 4.829E-02 4.989E-02 4.829E-02 5.119E-02
13.75 6.441E-02 6.157E-02 4.999E-02 6.157E-02 6.202E-02
16.75 4.989E-02 3.950E-02 4.922E-02 3.950E-02 4.632E-02
19.25 3.439E-02 3.239E-02 3.018E-02 3.239E-02 4.356E-02
22.5 4.960E-02 5.075E-02 6.141E-02 5.075E-02 4.582E-02
27.5 3.443E-02 3.424E-02 2.369E-02 3.424E-02 4.061E-02
32.5 2.629E-02 2.515E-02 1.459E-02 2.515E-02 1.440E-02
37.5 1.196E-02 1.275E-02 1.933E-02 1.275E-02 6.620E-03
42.5 3.388E-03 8.547E-03 5.700E-03 8.547E-03 4.698E-03
47.5 1.165E-02 8.524E-03 4.608E-03 8.524E-03 7.927E-03
55 3.345E-03 7.677E-03 1.040E-02 7.677E-03 1.322E-02
65 4.005E-03 4.359E-03 3.662E-03 4.359E-03 9.155E-03
85 7.168E-03 5.143E-03 4.981E-03 5.143E-03 1.643E-02
125 3.588E-03 2.987E-03 4.433E-03 2.987E-03 8.458E-03
225 4.340E-03 2.402E-03 1.996E-03 2.402E-03 1.255E-02
400 1.233E-03 2.056E-03 1.907E-03 2.056E-03 5.082E-03
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